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1. Introduction

Now, we have lots of 4D string models leading to
(semi-)realistic massless spectra such as

SU(3)xSU(2)xU(1) gauge groups,

three chiral genenations,

vector-like matter fields and lots of singlets

with and without chiral exotic fields,

e.g. in

heterotic orbifold models,

type II intersecting D-brane models,

type II magnetized D-brane models,

etc.
What about their 4D low-energy effective theories ?
Are they realistic ?
What about the quark/lepton masses and mixing angles ?



4D low-energy effective field theory
Abelian discrete symmetries

In general, string models lead to Abelian discrete

symmetries, which are quite important to control
4D low-energy effective field theory.

Quark/Lepton masses and mixing angles

The top quark mass, i.e. O(1) of Yukawa coupling,
can be derived in many string models.

How to derive other light fermion masses

(corresponding to suppressed Yukawa couplings)
IS model-dependent.

Flavor physics is still a challenging issue.



Lepton masses and mixing angles

M,=05  MeV, M, =106  MeV
M =18  GeV,

mass squared differences and mixing angles
consistent with neutrino oscillation

AM?Z =8x10"° eV’ AMZ =2x10"°  eV?

sin“6,=0.3, sin“0,=05  sin°d,=0,

large mixing angles



Tri-bimaximal mixing Ansatz

(92 1 O\
J6 /3
R R
MNS \/6\/5 \/E
I
L V6 V3 V2

large mixing angles



Non-Abelian discrete flavor symm.

Recently, in field-theoretical model building,
several types of discrete flavor symmetries have
been proposed with showing interesting results,
e.g. S3, D4, A4, 54, Q6, A(27), ......
Review: e.g
Ishimori, T.K., Ohki, Okada, Shimizu, Tanimoto ‘10

= large mixing angles
e Ansatz: tri-bimaximal (J2/3 V173 0 )

i76 13 -2




Non-Abelian symm.

String model builders have not cared about
non-Abelian discrete symmetires.

Recently, we showed that certain non-Abelian

flavor symmetries appear in string models.

Studies on discrete anomalies are also important.



2. Abelian discrete symmetries
2-1. coupling selection rule
A string can be specified by

N\ )4eF3]| its boundary condition.

X(oc=0)

Two strings can be connected
to become a string if their
boundary conditions fit each other.

== coupling selection rule
symmetry

Se
\



2-2. Intersecting D-brane models

gauge boson: open string, whose two end-points
are on the same (set of) D-brane(s)
N parallel D-branes = U(N) gauge group




Intersecting D-branes

Where is matter fields ?

New modes appear between intersecting D-branes.
They have charges under both gauge groups, i.e.
bi-fundamental matter fields.

boundary condition

X*(c=0)=0, 0_X'(c=0)=0
X' (oc=n)tanOr + X*(c=x)=0,
O X' (oc=n)-0_X*(c=rx)tan Oz =0

Twisted boundary condition



Toy model (in uncompact space)

gauge bosons : on brane
quarks, leptons, higgs :
localized at intersecting points
u(l) _su(2)
su(3 H



Generation number

Torus compactification
Family number = intersection number

/1!

su(3) su(3)



Boundary conditions

X?*(c=0)—X?*(oc=n)
=0,1,2 (mod 3)

Three strings with the same
gauge charges can be
distinguished by
boundary conditions,

i.e. Z3 charges.

Generic case == /N symmetries



2.3  Heterotic orbifold models

S1/72 Orbifold

There are two singular points,
which are called fixed points.



Orbifolds
T2/Z3 Orbifold

There are three fixed points on Z3 orbifold
(0,0), (2/3,1/3), (1/3,2/3) su(3) root lattice

Orbifold = D-dim. Torus /twist
Torus = D-dim flat space/ lattice



Closed strings on orbifold

Untwisted and twisted strings

Twisted strings are associated with fixed points.
“Brane-world” terminology:

untwisted sector bulk modes

twisted sector brane (localized) modes



Heterotic orbifold models
S1/72 Orbifold

O oo

X(oc=rn)=—X (o =0)
X(oco=n)—el/2=—(X(c=0)—-e/2)

X(oc=7n)=—X(c=0)+ne, n=0,1 (mod 2)



Heterotic orbifold models
S1/72 Orbifold

03

twisted string
X(o=n)=—X(c=0)+ne, n=0,1 (mod 2)

untwisted string X(o=7x)= X (o =0)
X(o=7n)=(-D"X(c=0)+ne,
m,n=0,1 (mod 2)



/2 X Z2 in Heterotic orbifold models

S1/72 Orbifold
X(o=7n)=(-D"X(c=0)+ne,

m,n=0,1 (mod 2)

two Z2’s
twisted string

o A o

untwisted string
Z2 even for both Z2



Closed strings on orbifold

Untwisted and twisted strings

Twisted strings (first twisted sector)
X(o=n)=6X(c=0)+ne, n=0,1,2(mod 3)

seconazpms Sect up to lattice A =3me, +n(e, —¢,)

X(c=7r)=0°X(c=0)+ne, n=0,1,2(mod 3)
untwisted sector
X(o=7n)=X(c=0)



/3 X Z3 in Heterotic orbifold models

T2/Z3 Orbifold
X(oc=7n)=0"X(c=0)+ne,
mn=0,1,2 (mod 3)
two Z3’s

twisted string (first twisted sector)

‘o 0 0) (1 0 O0)

O w 0| |0 @w O | w=exp(2d/3)

0 0 w) (0 0 &,

untwisted string

vanishing Z3 charges for both Z3




2-4. Magnetized D-branes

We consider torus compactification
with magnetic flux background.




Boundary conditions
on magnetized D-branes

O_X*+F, .0 X*>=0,
F,.0o X*—86_X®=0,

similar to the boundary condition of
open string between intersecting D-branes

T-dual



Higher Dimensional theory with flux U((l)

U
Abelian gauge field on magnetized torus o4

Constant magnetic flux Il EsS=Ne}

gauge fields of background {

y ya ~ ys + 1L QY4
ys ~ ys 4 1

Ia5




Torus with magnetic flux

We solve the zero-mode Dirac equation,

1y"D,yw =0

e.g. for U(1) charge g=1.

Torus background with magnetic flux
leads to chiral spectra.

the number of zero-modes

= M (magnetic flux)
)l




Wave functions

For the case of M=3
EEe)

Wave function profile on toroidal background

Zero-modes wave functions are quasi-localized far away each
other in extra dimensions. Therefore the hierarchirally small
Yukawa couplings may be obtained.



Zero-modes
F.=27zM, A, =0, A=2rYy,

Wave-function = (gaussian) x (theta-function)
We have quantized momentum,

P =27k, (mod M)

The peaks of wave functions correspond to
Yy, = k/M

The momentum conservation
mm) /M discrete symmetry

e.g. M\=3 == /3 symmetry



3. Non-Abelian discrete symmetries

3-1. Heterotic orbifold models
S1/72 Orbifold

(C mm—— )
String theory has two Z2’s.

In addition, the Z2 orbifold has the geometrical
symmetry, i.e. Z2 permutation.

X(o=7n)=(-D"X(c=0)+ne,
m,n=0,1 (mod 2)



D4 Flavor Symmetry

Stringy symmetries require that Lagrangian has the
permutation symmetry between 1 and 2, and each
coupling is controlled by two Z2 symmetries.

Flavor symmeties: closed algebra S2 U(Z2xZ2)

(0 1j (—1 oj [1 0]
01 — , —1: 63 =
10 0 - 0 -1
D4 elements _
+1, + oy, tlo,, + o,

modes on two fixed points = doublet

untwisted (bulk) modes = singlet
Geometry of compact space

- origin of finite flavor symmetry

Abelian part (Z2xZ2) : coupling selection rule

S2 permutation : one coupling is the same as another.

T.K., Raby, Zhang, ‘05



Explicit Z6-11 model: Pati-Salam
T.K. Raby, Zhang '04

Z6-11 includes 2D Z2 orbifold.

Once we fix the orbifold and gauge background
in string theory, all of modes can be computed.
One can not add or reduce any modes by hand

(unlike field-theoretical brane-world models).
Gauge group

SU (4) x SU (2) x SU (2) x SO(10)'xSU (2)><U (1)°
Chiral fields
Pati-Salam model with 3 generations + extra fields
All of extra matter fields can become massive



Heterotic orbifold as brane world

2D Z2 orbifold

1 generation in bulk

two generations on two fixed points
unbroken SU(4) * SU(2) * SU(2) D4
bulk = (4,2,1) + (4*%,1,2)+... singlet
localized modes = (4,2,1) + (4*%,1,2) doublet



Explicit Z6-11 model: MSSM

Buchmuller, Hamaguchi, Lebedev, Nilles, Raby,
Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 06, ‘07

4D massless spectrum
Gauge group SU(3)xSU (2)xU (1), xG,,

Chiral fields

3 generations of MSSM + extra fields

All of extra matter fields can become massive
along flat directions
There are O(100) models.




Heterotic orbifold models
T2/Z3 Orbifold

twoZBs
‘(o 0 0) (1 0 0

O w 0| |0 wo 0| w=exp(2rd/3)

/3 orbifold has the S3 geometrical symmetry,
0 1 0) (1 0 O

0 0 1, |0 0 1
1 0 0) (0 1 0O,

Their closed algebra is A(54).
T.K., Nilles, Ploger, Raby, Ratz, ‘07



Heterotic orbifold models

T2/Z3 Orbifold

has A(54) symmetry.

localized modes on three fixed points
mmmmd /\(54) triplet

bulk modes ==p A(54) singlet

T.K., Nilles, Ploger, Raby, Ratz, ‘07



3-2. intersecting/magnetized
D-brane models

Abe, Choi, T.K. Ohki, ‘09, ‘10

A

P \ &

There is a Z2 permutation symmetry.
The full symmetry is D4.




intersecting/magnetized
D-brane models

II Abe, Choi, T.K. Ohki, ‘09, ‘10

\f

geometrlcal symm. FuII symm.
/3 A(27)

S3 A(54)



intersecting/magnetized

D-brane models

generic intersecting number

magnetic flux

flavor symmetry is a closed algebra of

two Zg’s.

and Zg permutation

Certain case: Zg permutation

Dg

1

yo,

g

(0O 1
O O

N

yo,

yo,

O O0O)

1

O

J

larger symm. Like



Magnetized brane-models

Magnetic flux M D4
2 2
4 1++ + 1+ +1-+ + 1--
Magnetic flux M A(27) (A(54))
3 31
6 2 X 31
9 21n n=1,...,9

(114320 n=1,...,4)



3-3. field theory: extension
Abe, Choi, T.K., Ohki, Sakai, ‘10
o0 geometrical symm.

i

S1/72 Orbifold

String theory has two Z2’s. 1 0
0 -1
We assign generic ZN charges to localized fields
on two fixed points, (eZﬂiq/N 0
O eZﬂip/N]
—

flavor symmetries s D | (2N?)



field theory: extension

T2/Z3 Orbifold geometrical symm.
/3, S3
1 0 O
String theory has two Z3’s. 0w 0
0 0
We assign generic ZN charges to localized fields
on three fixed points, Leo o 8 J
0 0 e

) flavor symmetries
A,, ABN?), S,, A(BN?),Q,, T,, =(81),--:

Stringy derivation is not clear.



4. Discrete anomalies

4-1. Abelian discrete anomalies

Symmetry ) violated
quantum effects

U(1)-G-G anomalies
anomaly free condition > qT,(R)=0

/N-G-G anomalies
anomaly free condition

24T, (R)=0 (mod N)



Abelian discrete anomalies:
path integral

Zn transformation W — Y
path integral measure

DyDy —J DyDy
J =exp[Ag [d*x tr(F“'F,,)]

3272

1
A:ﬁZqu(R)

1 _fd“x tr(F”‘”IEW) = integer

3272

/N-G-G anomalies
anomaly free condition

24T, (R)=0 (mod N)




Heterotic orbifold models

There are two types of Abelian discrete symmetries.

T2/Z3 Orbifold
X(oc=7n)=0"X(oc=0)+ne,

mn=0,1,2 (mod 3)
two Z3’s

One is originated from twists,
the other is originated from shifts.

Both types of discrete anomalies Zq INGS.
are universal for different groups G.
Araki, T.K., Kubo, Ramos-Sanches, Ratz,Vaudrevange, ‘08



Heterotic orbifold models
U(1)-G-G anomalies >_.qT,(R)
are universal for different groups G.
mmmm)p 4D Green-Schwarz mechanism
due to a single axion (dilaton),
which couples universally with gauge sectors.
/N-G-G anomalies may also be cancelled
by 4D GS mechanism.
There is a certain relations between
U(1)-G-G and ZN-G-G anomalies,
anomalous U(1) generator is a linear combination

of anomalous ZN generators.
Araki, T.K., Kubo, Ramos-Sanches, Ratz,Vaudrevange, ‘08



4-2. Non-Abelian discrete anomalies

Araki, T.K., Kubo, Ramos-Sanches, Ratz, Vaudrevange, ‘08
Non-Abelian discrete group

G={9,,9,,-, gy} finite elements
Each element generates an Abelian symmetry.
(gk)Nk =1

We check ZN-G-G anomalies for each element.
qu T,(R)=0 (mod N,)
All elements are free from ZN-G-G anomalies.
=) The full symmetry G is anomaly-free.
Some ZN symmetries for elements gk are anomalous.
mmm)P The remaining symmetry corresponds to
the closed algebra without such elements.



Non-Abelian discrete anomalies

matter fields = multiplets under non-Abelian
discrete symmetry

Each element is represented by a matrix on the
multiplet.

det(g)—=1 ===p > q, T,(R)=0 (mod N,)

Such a multiplet does not contribute to
/N-G-G anomalies.

String models lead to certain combinations of
multiplets.

mmm) |imited pattern of non-Abelian discrete
anomalies



Heterotic

string on Z2 orbifold:

D4 Flavor Symmetry
Flavor symmeties: closed algebra S2 U(Z2xZ2)

modes on two fixed points = doublet

untwisted (bul

0 1
171 o

K) modes = singlet

S P S

The first Z2 is always anomaly-free, while the
others can be anomalous.

However, it is simple to arrange models such that
the full D4 remains.
e.g. left-handed and right-handed quarks/leptons

1+ 2
Such a pattern

s realized in explicit models.



Heterotic models on Z3 orbifold
two Z3’s

‘o 0 0) (1 0 0)
O w 0|, |0 w O | w=exp(2xd/3)
0 0 w) (O O 0)2/

/3 orbifold has the S3 geometrical symmetry,
‘0 1 0) (1 0 0)
O 0 1|, 10 O 1
1 0 0) (0 1 O,

Their closed algebra is A(54).
The full symmetry except Z2 is always anomaly-free.
That is, the A(27) is always anomaly-free.

Abe, et. al. work in progress




Magnetized/intersecting brane-

models
In general, several representations appear, e.g.

Magnetic flux M D4
2 2
4 1++ + 1+ +1-+ + 1--

Similar to heterotic orbifold models, only Z2
symmetries can be anomalous, but ZN
symmetries with N=odd are always anomaly-free.

Abe, et. al. work in progress



4-2. Implication
Under the full symmetry, the three generations

nave different quantum numbers.
Kahler potential is diagonal,

K = Kll(x)‘ql‘z T Kzz(x)‘qz‘z + K33(X) C|3‘2 T

where X denote singlet fields (moduli)
triplet Kll(x) — Kzz(x) — K33(X)

1+2 K1 (X) = Ky, (X) # Ky3(X)

1+ 1’+17 K,;(X): independen of each other



sfermion mass
SUSY breaking due to F-term of X

_ m> 0 O
triplet 0 m o0
0 0 m

mi 0 O

1+2 0 m> 0

0 0 m

m> 0 O
1+ 1’+1u 0 m22 0



symmetry breaking
Breaking of the flavor symmetries would induce

off-diagonal elements in the Kahler potential,
e.g.
AK =Ky, (X)(90, +0,0,) +--

and sfermion mass-squared matrix,
e.g.

m Am;, O

Am;, m. 0

0 0 m

Large off-diagonal elements are not good from

FCNC.
Large breaking is not good.



symmetry breaking

Anyway, we have to break the symmetry to derive
realistic lepton/quark masses and mixing angles.

When symmetry breaking is related with lepton masses,
e.g. AM;, = m,/m

or more suppressed value,

that would be OK.

Such suppression could be obtained

in string-inspired flavor models.
Ko, T.K., Park, Raby, ‘07
Ishimori, T.K., Ohki, Okada, Omura, Shimizu, Takahashi,
Tanimoto, 08, ‘09



Lepton flavor model building

First, we assume a certain flavor symmetry.
Then, we break it to a proper direction by flavon VEVSs.
meem) realistic MNS mixing matrix and lepton masses

We have achieved the first step for certain flavor symmetries.

Flavon VEVs correspond to deformation of compact space,
e.g. blow-up of orbifold singularity.

Which deformation is realistic ?

Another type of breaking, e.q.
by orbifold boundary conditions.

T.K., Omura, Yoshioka, ’08
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