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1. Introduction
Now, we have lots of 4D string models leading to 

(semi-)realistic massless spectra such as  

SU(3)xSU(2)xU(1) gauge groups,

three chiral genenations, 

vector-like matter fields and lots of singlets 

with and without chiral exotic fields, 

e.g. in 

heterotic orbifold models, 

type II intersecting D-brane models,

type II magnetized D-brane models, 

etc.

What about their 4D low-energy effective theories ?

Are they realistic ?

What about the quark/lepton masses and mixing angles ?



4D low-energy effective field theory
Abelian discrete symmetries
In general, string models lead to Abelian discrete 
symmetries, which are quite important to control 
4D low-energy effective field theory.

Quark/Lepton masses and mixing angles
The top quark mass, i.e. O(1) of Yukawa coupling, 
can be derived in many string models.

How to derive other light fermion masses 
(corresponding to suppressed Yukawa couplings) 
is model-dependent. 

Flavor physics is still a challenging issue. 



Lepton masses and mixing angles

mass squared differences and mixing angles 

consistent with neutrino oscillation

large mixing angles
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Tri-bimaximal mixing Ansatz

large mixing angles
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Non-Abelian discrete flavor symm.

Recently, in field-theoretical model building, 

several types of discrete flavor symmetries have 

been proposed with showing interesting results, 

e.g. S3, D4, A4, S4, Q6, Δ(27), ......

Review: e.g 

Ishimori, T.K., Ohki, Okada, Shimizu, Tanimoto „10

⇒ large mixing angles 

one Ansatz: tri-bimaximal
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Non-Abelian symm. 

String model builders have not cared about 

non-Abelian discrete symmetires.

Recently, we showed that certain non-Abelian 

flavor symmetries appear in string models.

Studies on discrete anomalies are also  important.



2. Abelian discrete symmetries
2-1. coupling selection rule

A string can be specified by 

its boundary condition.

Two strings can be connected 

to become a string if their 

boundary conditions fit each other.

coupling selection rule

symmetry
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2-2. Intersecting  D-brane models

gauge boson:  open string, whose two end-points 

are on the same (set of) D-brane(s)    

N parallel D-branes ⇒ U(N) gauge group  



Intersecting D-branes

Where is matter fields ?

New modes appear between intersecting D-branes.

They have charges under both gauge groups, i.e. 

bi-fundamental matter fields.

boundary condition     

Twisted boundary condition
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Toy model (in uncompact space)

gauge bosons ： on brane  

quarks, leptons, higgs :   

localized at intersecting points

u(1)   su(2)

su(3)                     H

Q 

L

u,d



Generation number

Torus compactification
Family number = intersection number

su(2)                                                     U(1)

Q1     Q2 Q3       su(3) u1       u2          u3      su(3)



Boundary conditions

Three strings with the same 

gauge charges can be  

distinguished by 

boundary conditions, 

i.e. Z3 charges.

Generic case                ZN symmetries
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2.3     Heterotic orbifold models

S1/Z2 Orbifold

There are two singular points, 

which are called fixed points.



Orbifolds

T2/Z3 Orbifold

There are three fixed points on Z3 orbifold

(0,0),  (2/3,1/3), (1/3,2/3)   su(3) root lattice

Orbifold = D-dim. Torus /twist

Torus = D-dim flat space/ lattice 



Closed strings on orbifold

Untwisted and twisted strings

Twisted strings are associated with fixed points.

“Brane-world” terminology:

untwisted sector    bulk modes

twisted sector        brane (localized) modes



Heterotic orbifold models

S1/Z2 Orbifold
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Heterotic orbifold models
S1/Z2 Orbifold

twisted string

untwisted string )0()(   XX
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Z2 x Z2 in Heterotic orbifold models
S1/Z2 Orbifold

two Z2‟s 

twisted string

untwisted string 

Z2 even for both Z2
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Closed strings on orbifold

Untwisted and twisted strings

Twisted strings (first twisted sector)

second twisted sector

untwisted sector   

)(e3 lattice  toup     twist,120
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Z3 x Z3 in Heterotic orbifold models
T2/Z3 Orbifold

two Z3‟s 

twisted string (first twisted sector)

untwisted string 

vanishing Z3 charges for both Z3
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2-4. Magnetized D-branes

We consider torus compactification 

with magnetic flux background.

F                   



Boundary conditions 
on magnetized D-branes

similar to the boundary condition of 

open string between intersecting D-branes

T-dual                                  
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Higher Dimensional theory with flux

Abelian gauge field on magnetized torus

Constant magnetic flux

Consistency requires Dirac‟s quantization condition.

gauge fields of background 



Torus with magnetic flux 

We solve the zero-mode Dirac equation,

e.g. for U(1) charge q=1.

Torus background with magnetic flux 

leads to chiral spectra.

the number of zero-modes 

=  M (magnetic flux) 

x q (charge) 

0 m

mDi



Wave functions 

Wave function profile on toroidal background 

For the case of M=3

Zero-modes wave functions are quasi-localized far away each 

other in extra dimensions. Therefore the hierarchirally small 

Yukawa couplings may be obtained. 



Zero-modes

Wave-function = (gaussian) x (theta-function)

We have quantized momentum,  

The peaks of wave functions correspond to           

The momentum conservation 

ZM discrete symmetry 

e.g. M=3             Z3 symmetry
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3. Non-Abelian discrete symmetries
3-1.    Heterotic orbifold models
S1/Z2 Orbifold

String theory has two Z2‟s.

In addition, the Z2 orbifold has the geometrical 

symmetry, i.e.  Z2 permutation.
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D4 Flavor Symmetry
Stringy symmetries require that  Lagrangian has the 

permutation symmetry between 1 and 2, and each 
coupling is controlled by two Z2 symmetries. 

Flavor symmeties: closed algebra S2 U(Z2xZ2) 

D4 elements

modes on two fixed points ⇒ doublet 

untwisted (bulk) modes ⇒ singlet

Geometry of compact space 

 origin of finite flavor symmetry 

Abelian part (Z2xZ2) : coupling selection rule

S2 permutation  :  one coupling is the same as another.

T.K., Raby, Zhang, „05
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Explicit Z6-II model: Pati-Salam
T.K. Raby, Zhang ‟04

Z6-II includes 2D Z2 orbifold.

Once we fix the orbifold and gauge background 

in string theory,  all of modes can be computed.

One can not add or reduce any modes by hand 

(unlike field-theoretical brane-world models).

Gauge group

Chiral fields

Pati-Salam model with 3 generations + extra fields

All of extra matter fields can become massive

5)1()'2()'10()2()2()4( USUSOSUSUSU 



Heterotic orbifold as brane world

2D Z2 orbifold

1 generation in bulk

two generations on two fixed points

unbroken SU(4)＊SU(2)＊SU(2)                D4

bulk  ⇒ (4,2,1) + (4*,1,2)+...                 singlet

localized modes ⇒ (4,2,1) + (4*,1,2)     doublet



Explicit Z6-II model: MSSM
Buchmuller, Hamaguchi, Lebedev, Nilles, Raby,    

Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, ‟06, „07

4D massless spectrum

Gauge group

Chiral fields

3 generations of MSSM + extra fields

All of extra matter fields can become massive 

along flat directions

There are O(100) models.

HY GUSUSU  )1()2()3(



Heterotic orbifold models
T2/Z3 Orbifold

two Z3‟s 

Z3 orbifold has the S3 geometrical symmetry,  

Their closed algebra is Δ(54).

T.K., Nilles, Ploger, Raby, Ratz, „07
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Heterotic orbifold models

T2/Z3 Orbifold

has Δ(54) symmetry.

localized modes on three fixed points 

Δ(54) triplet

bulk modes                   Δ(54) singlet

T.K., Nilles, Ploger, Raby, Ratz, „07



3-2. intersecting/magnetized 
D-brane models

Abe, Choi, T.K. Ohki, ‟09, „10

There is a Z2 permutation symmetry.

The full symmetry is D4.



intersecting/magnetized 
D-brane models

Abe, Choi, T.K. Ohki, ‟09, „10

geometrical symm.     Full symm. 

Z3                         Δ(27)                    

S3                   Δ(54)



intersecting/magnetized 
D-brane models Abe, Choi, T.K. Ohki, ‟09, „10

generic intersecting number    g

magnetic flux

flavor symmetry is a closed algebra of 

two Zg‟s.

and Zg permutation

Certain case:  Zg permutation    larger symm. Like 
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Magnetized brane-models

Magnetic flux M                 D4

2                                2

4                   1++ + 1+- +1-+ + 1--

・・・ ・・・・・・・・・

Magnetic flux M                 Δ(27)     (Δ(54))

3                                  31

6                                2 x 31 

9                                ∑1n n=1,…,9    

(11+∑2n n=1,…,4)

・・・ ・・・・・・・・・



3-3.   field theory: extension
Abe, Choi, T.K., Ohki, Sakai, „10

S1/Z2 Orbifold                        geometrical symm.

String theory has two Z2‟s.

We assign generic ZN charges to localized fields 

on two fixed points, 

flavor symmetries 
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field theory: extension

T2/Z3 Orbifold                        geometrical symm.

Z3,   S3

String theory has two Z3‟s.

We assign generic ZN charges to localized fields 

on three fixed points, 

flavor symmetries 

Stringy derivation is not clear.
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4. Discrete anomalies
4-1. Abelian discrete anomalies 

Symmetry                             violated

quantum effects

U(1)-G-G  anomalies

anomaly free condition 

ZN-G-G anomalies  

anomaly free condition

  0)( 2 RTq
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Abelian discrete anomalies:
path integral 

Zn transformation                            
path integral measure

ZN-G-G anomalies  
anomaly free condition
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Heterotic orbifold models
There are two types of Abelian discrete symmetries.

T2/Z3 Orbifold

two Z3‟s 

One is originated from twists, 

the other is originated from shifts.

Both types of discrete anomalies 

are universal for different groups G.

Araki, T.K., Kubo, Ramos-Sanches, Ratz,Vaudrevange, „08
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Heterotic orbifold models
U(1)-G-G anomalies 

are universal for different groups G.

4D Green-Schwarz mechanism 

due to a single axion (dilaton), 

which couples universally with gauge sectors.

ZN-G-G anomalies may also be cancelled 

by 4D GS mechanism.

There is a certain relations between 

U(1)-G-G and ZN-G-G anomalies,

anomalous U(1) generator is a linear combination 

of anomalous ZN generators.
Araki, T.K., Kubo, Ramos-Sanches, Ratz,Vaudrevange, „08
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4-2. Non-Abelian discrete anomalies 
Araki, T.K., Kubo, Ramos-Sanches, Ratz, Vaudrevange, „08

Non-Abelian discrete group

finite elements

Each element generates an Abelian symmetry.

We check  ZN-G-G anomalies for each element. 

All elements are free from ZN-G-G anomalies.

The full symmetry G is anomaly-free.

Some ZN symmetries for elements gk are anomalous.

The remaining symmetry corresponds to 

the closed algebra without such elements.

},,,{ 21 MgggG 

)  (mod      0)( 2 kk NRTq 

1)( kN

kg



Non-Abelian discrete anomalies 
matter fields    =  multiplets under non-Abelian 

discrete symmetry 

Each element is represented by a matrix on the 
multiplet.

Such a multiplet does not contribute to 

ZN-G-G anomalies.

String models lead to certain combinations of 
multiplets.

limited pattern of non-Abelian discrete                    

anomalies

) (mod   0)( 2 kk NRTq 1)( det kg



Heterotic string on Z2 orbifold:
D4 Flavor Symmetry

Flavor symmeties: closed algebra S2 U(Z2xZ2) 

modes on two fixed points ⇒ doublet 

untwisted (bulk) modes ⇒ singlet

The first Z2 is always anomaly-free, while the 
others can be anomalous.

However, it is simple to arrange models such that 

the full D4 remains.

e.g. left-handed and right-handed quarks/leptons 

1 + 2

Such a pattern is realized in explicit models.
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Heterotic models on Z3 orbifold
two Z3‟s 

Z3 orbifold has the S3 geometrical symmetry,  

Their closed algebra is Δ(54).

The full symmetry except Z2 is always anomaly-free.

That is, the Δ(27) is always anomaly-free.

Abe, et. al. work in progress
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Magnetized/intersecting brane-
models
In general, several representations appear, e.g. 

Magnetic flux M                 D4

2                                2

4                   1++ + 1+- +1-+ + 1--

・・・ ・・・・・・・・・

Similar to heterotic orbifold models, only Z2 
symmetries can be anomalous, but ZN 
symmetries with N=odd are always anomaly-free.

Abe, et. al. work in progress



4-2. Implication 
Under the full symmetry, the three generations 

have different quantum numbers.

Kahler potential is diagonal,

where X denote singlet fields (moduli)

triplet 
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sfermion mass 
SUSY breaking due to F-term of X

triplet 
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symmetry breaking
Breaking of the flavor symmetries would induce 

off-diagonal elements in the Kahler potential, 

e.g.

and sfermion mass-squared matrix, 

e.g. 

Large off-diagonal elements are not good from 

FCNC.

Large breaking is not good.
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symmetry breaking
Anyway, we have to break the symmetry to derive 

realistic lepton/quark masses and mixing angles.

When symmetry breaking is related with lepton masses, 

e.g. 

or more suppressed value, 

that would be OK.

Such suppression could be obtained 

in string-inspired flavor models.

Ko, T.K., Park, Raby,   „07

Ishimori, T.K., Ohki, Okada, Omura, Shimizu, Takahashi, 

Tanimoto,    ‟08, „09
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Lepton flavor model building
First, we assume a certain flavor symmetry.

Then, we break it to a proper direction by flavon VEVs.

realistic MNS mixing matrix and lepton masses

We have achieved the first step for certain flavor symmetries.

Flavon VEVs correspond to deformation of compact space, 

e.g. blow-up of orbifold singularity.

Which deformation is realistic ?

Another type of breaking, e.g. 

by orbifold boundary conditions.

T.K., Omura, Yoshioka,    ‟08



Summary  

We have studied discrete symmetries and their 

anomalies.

We have just started non-Abelian discrete 

symmetries.

We have obtained limited discrete symmetries

in heterotic orbifold models and 

intersecting/magnetized D-brane models.

What about string models on 

other compact spaces ?



Summary

It is still a challenging issues how to derive 

realistic quark/lepton mass matrices.

Flavon VEVs would correspond to 

a certain deformation from a symmetric 

compact space.


